An International Quarterly Research Journal

ACL

                                                                                                       ISSN : 0971 - 9822

                                                                           Vol 20,  Nos 1&2,  January-July, 2016


Asian Chemistry Letters                                                                                                     Vol. 20, Nos. 1&2 (2016)01-11


Accepted Papers

 

Synthesis, spectral characterization, thermal and its inhibitory activity against breast carcinoma cells of transition metal complexes with 3-amino-1H-1,2,4-triazol Schiff base


Ali M Hassana,Bassem H Heakalb,*, T M Kehelac, O A Fouad d , and A Mohy Eldine

aChemistry Departmentt, Faculty of Science, Al-Azhar University, Nasr City,11884, Cairo, Egypt.

bResearch Laboratory, Cairo Oil Refining Company, Cairo, Egypt.

cForensic Medicine Authority Ministry of Justice, Cairo, Egypt.

dCentral Metallurgical Research & Development Institute P.O. 87, Helwan 11421,Cairo, Egypt

eR & D laboratories, EL-Obour Company for Paints & Chemical Industries Pachin, Cairo, Egypt

___________________________________________________________________________________________________________________________________

A triazole derived Schiff base ligand has been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with salicyaldehyde. The prepared Schiff base ligand 2-[(1,2,4–triazol-3-ylimino)- methyl] phenol was used for complex formation with different metal ions using Cu(II)(CH3COOH)2, Ag(I)NO3 and HAu(III)Cl4 in a molar ratio of ligand : metal as 1:1. The stereochemistry and the mode of bonding of the solid complexes were achieved based on elemental analysis, IR, UV-Vis, 1HNMR, MS and Thermogravimetric Analysis (TGA). Structures proposed for geometry of the chelates are based on their electronic spectra and magnetic moment. Cu(II) and Au(III) complexes possessed an square planer geometry, whereas silver complex has a tetrahedral geometry. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats–Redfern and Horowitz Metzeger equations. All the metal complexes undergo decomposition in three stages and metal oxides (MO) remained as end-products of the complexes. The metal complexes show inhibitory activity against breast carcinoma cells. © Anita Publications. All rights reserved.

Keywords: Triazole Schiff bases, C–H activation, Breast cancer, Thermal analysis, Thermogravimetric Analysis (TGA)

Total Refs: 46

___________________________________________________________________________________________________________________________________


Asian Chemistry Letters                                                                                                     Vol. 20, Nos. 1&2 (2016)13-24

 

Applications of surface-enhanced Raman spectroscopy (SERS) for chirality recognition: Mini-Review


Mohammad H Mahaninia and Lee D Wilson

 Department of Chemistry,University of Saskatchewan, 110 Science Place,

Saskatoon, SK, Canada S7N 5C9

___________________________________________________________________________________________________________________________________

Chiral recognition and molecular differentiation is a challenging aspect of chemical research, especially the design of receptor systems with favorable properties that afford separation and differentiation of stereoisomers from racemic mixtures. Raman spectroscopy is a novel and promising tool for structural characterization of chiral compounds but the occurrence of a strong fluorescence background is a key issue that limits its general utility. To overcome the weak scattering cross-section of various molecular systems, recent advances related to the sensitivity and detection of chiral species on appropriate substrates result in surface enhanced Raman spectroscopy (SERS). SERS can be used to extract the Raman spectral features from the fluorescence background to improve the spectral sensitivity. This mini-review summarizes the application of SERS for chiral recognition and detection of stereoisomers. We describe the potential of SERS as a rapid, inexpensive and accurate tool for the recognition and differentiation of the stereochemistry of selected molecular systems such as catalytic surface reactions. Finally, in a broader context, we show how this approach can significantly enhance the sensitivity of Raman spectroscopy, opening new prospects for the application of this spectroscopic technique in catalysis, biomedicine, and environmental science. © Anita Publications. All rights reserved.

Keywords: Surface Enhanced Raman Spectroscopy (SERS), Chiral discrimination, Enantiomers, Molecular recognition, Surface binding.

Total Refs: 53

  1. McManus C,The Origins of Asymmetry in Brains, Bodies, Atoms and Cultures, (Weidenfeld & Nicolson, London), 2002.

  2. Stanley J K, Ramirez A J, Mottaleb M, Chambliss C K, W Brooks B, Environ Toxicol Chem, 25(2006)178025(2006)1780-.

  3.   Brown J M, Davies S G, Nature, 342(1989)631342(1989)631.

  4.   Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi, Y Handa H, Science, 327(2010)1345.

  5.   Li B, Haynie D T, In Chiral drug Separation in Encyclopedia of Chemical Processing, ed S Lee, (Taylor & Francis, New York), 2005.

  6.   Wilson A G, Brooke O G, Lloyd H J, Robinson B F, Brit Med J, 4(1969)399-.

  7. Hazen1 R M,Sholl D S, Nat Mater, 2(2003)367-.

  8. Horvath J D, Gellman A J, J Am Chem Soc,123 (2001) 7953.

  9.   Fakayode S, Brady P, Pollard D, Mohammed A, Warner I, Anal Bioanal Chem, 394 (2009)1645.

10.  Ingle J, Busch K, Busch M, Talanta, 75(2008)572-584.

11.  Valderrama P, Poppi R, Anal Chim Acta, 651(2009) 31.

12.  Lorenzo M O, Baddeley C J, Muryn C, Raval R, Nature, 404(2000)376404(2000)376-.

13.  Kühnle A, Linderoth T R, Hammer B, Besenbacher F, Nature, 415(2002)891.

14.  Mc Kendry R, Theoclitou M-E, Rayment T, Abell Ch, Nature, 391(1998)566.

15.  Kiefer J, Analyst, 140 (2015)5012140 (2015)5012.

16.  Kiefer J, Noack K, Analyst,140(2015)1787140(2015)1787.

17.  Baranska H, Kuduk-Jaworska J, Szostak R, Romaniewska A, J Raman Spectrosc, 34 (2003) 68.

18.  Ozaki Y, Kneipp K, Aroca R, Frontiers of Surface-Enhanced Raman Scattering: Single Nanoparticles and Single Cells, (Wiley, Hoboken), 2014.

19.  Wang Y, Yan B, Chen L, Chem Rev, 113 (2013)1391.

20.  Li D W, Zhai W L, Li Y T, Long Y T, Mikrochim Acta, 181(2014) 23.

21.  Camden J P, Dieringer J A, Zhao J, Van Duyne R P, Acc Chem Res, 41(2008)1653.

22.  Moskovits M, Rev Mod Phys, 57(1985)783.

23.  Lombardi J R,Birke R L, Acc Chem Res, 42 (2009)734.

24.  Campion A,Kambhampati P, Chem Soc Rev, 27 (1998) 241.

25.  Park H,Lee S B, Kim K, Kim M S, J Phys Chem, 94 (1990) 757694 (1990) 7576.

26.  Ji W, Spegazzini N, Kitahama Y, Chen Y J, Zhao B, Ozaki Y, J Phys Chem Lett, 3(2012) 3204.

27.  Avila F, Ruano C, Lopez-Tocon I, Arenas J F, Soto J, Otero J C, Chem Commun, 47 (2011)4213.

28.  Wang Y, Ji W, Sui H, Kitahama Y, Ruan W, Ozaki Y, Zhao B, J Phys Chem C, 118 (2014)10191.

29.  Martin A, Pescaglini A, Schopf C, Scardaci V, Coull R, Byrne L, Iacopino D, J Phys Chem C, 118 (2014)13260.

30.  Cahn J W,Hilliard J E, J Chem Phys, 28 (1958)258.

31.  Graff M, Bukowska J, J Phys Chem B, 109 (2005)9567.

32.  Graff M, Bukowska J, Vib Spectrosc, 52 (2010)103.

33.  Li H, Wurrey C J, Thomas G J (Jr), J Am Chem Soc, 114 (1992)7463.

34.  Lee H, Kim M S, Suh S W, J Raman Spectrosc, 22(1991) 91.

35.  Bodoki E, Oltean M, Bodoki A, Stiufiuc R, Talanta, 101(2012)53.

36.  Maeda Y, Kitano H, Kobunshi Ronbunshu, 52(1995) 737.

37.  Yamamoto H, Maeda Y, Kitano H, J Phys Chem B,101(1997)6855.

38.  Mohamed M H, Wilson L D, Headley J V, Carbohyd Polym, 80(2010) 186.

39.  Abalde-Cela S, Hermida-Ramon J, Contreras-Carballada P, De Cola L, Guerrero-Martinez A,Alvarez-Puebla R, Liz-Marzan L, Chem PhysChem,12                    (2011)152912 (2011)1529

40.  Moskovits M, Suh J S, J Phys Chem, 88(1984)552688(1984)5526.

41.  Aroca R F, Surface Enhanced Vibrational Spectroscopy, (John Wiley & Sons, New York), 2006.

42.  Stiufiuc R, Iacovita C, Stiufiuc G, Bodoki E, Chis V, Lucaciu C, Phys Chem Chem Phys, 17(2015)128117(2015)1281.

43.  Wang Y, Yu Z, W Ji, Tanaka Y, Sui H, Zhao B, Ozaki Y, Angew Chem Int Ed Engl, 53(2014) 13866.

44.  Rupérez A,Laserna J, Anal Chim Acta, 335 (1996) 87.

45.  Chruszcz-Lipska K, Jaworska A, Szczurek E, Baranska M, Chirality, 26(2014) 453.

46.  Abdali S, J Raman Spectrosc, 37(2006) 134137(2006) 1341.

47.  Taylor R J, Jiang Y X, Rees N V, Attard G A, Jeffery E L, Willock D J, J Phys Chem C,115 (2011)21363.

48.  Szollosi G, Cserenyi S, Balazsik K, Fulop F, Bartok M, J Mol Catal A, 305 (2009)155.

49.  Burgi T, Atamny F, Knop-Gericke A, Havecker M, Schedel-Niedrig T, Schlogl R, Baiker A, Catal Lett, 66 (2000)109.

50.  LeBlanc R J, Chu W, Williams C T, J Mol Catal A, 212 (2004) 277212 (2004) 277.

51.  Chu W, LeBlanc R J, Williams C T, J Phys Chem B, 107(2003)14365.

52.  Ferri D, Bürgi T,Baiker A, Chem Commun,(2001)1172.

53.  Shahgaldian P, Pieles U, Sensors, 6(2006)593.

___________________________________________________________________________________________________________________________________